Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.811
Filtrar
1.
Cell Rep ; 43(4): 114078, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38598334

RESUMO

The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.


Assuntos
Lactobacillus , Microbiota , Vagina , Humanos , Vagina/microbiologia , Feminino , Microbiota/genética , Lactobacillus/genética , Adesinas Bacterianas/genética , Etnicidade/genética , Adulto , Evolução Molecular , Gravidez , Seleção Genética , Evolução Biológica
2.
Food Microbiol ; 121: 104519, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637081

RESUMO

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Assuntos
Manose , Salmonella typhimurium , Salmonella typhimurium/genética , Manose/metabolismo , Spinacia oleracea , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Adesinas Bacterianas/genética , Aderência Bacteriana/genética
3.
Nat Commun ; 15(1): 3078, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594280

RESUMO

The bacterium Bdellovibrio bacteriovorus is a predator of other Gram-negative bacteria. The predator invades the prey's periplasm and modifies the prey's cell wall, forming a rounded killed prey, or bdelloplast, containing a live B. bacteriovorus. Redundancy in adhesive processes makes invasive mutants rare. Here, we identify a MIDAS adhesin family protein, Bd0875, that is expressed at the predator-prey invasive junction and is important for successful invasion of prey. A mutant strain lacking bd0875 is still able to form round, dead bdelloplasts; however, 10% of the bdelloplasts do not contain B. bacteriovorus, indicative of an invasion defect. Bd0875 activity requires the conserved MIDAS motif, which is linked to catch-and-release activity of MIDAS proteins in other organisms. A proteomic analysis shows that the uninvaded bdelloplasts contain B. bacteriovorus proteins, which are likely secreted into the prey by the Δbd0875 predator during an abortive invasion period. Thus, secretion of proteins into the prey seems to be sufficient for prey killing, even in the absence of a live predator inside the prey periplasm.


Assuntos
Bdellovibrio bacteriovorus , Bdellovibrio , Bdellovibrio bacteriovorus/genética , Bdellovibrio/genética , Proteômica , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo
4.
Vet Res ; 55(1): 37, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532498

RESUMO

In the last decade, prophages that possess the ability of lysogenic transformation have become increasingly significant. Their transfer and subsequent activity in the host have a significant impact on the evolution of bacteria. Here, we investigate the role of prophage phi456 with high spontaneous induction in the bacterial genome of Avian pathogenic Escherichia coli (APEC) DE456. The phage particles, phi456, that were released from DE456 were isolated, purified, and sequenced. Additionally, phage particles were no longer observed either during normal growth or induced by nalidixic acid in DE456Δphi456. This indicated that the released phage particles from DE456 were only phi456. We demonstrated that phi456 contributed to biofilm formation through spontaneous induction of the accompanying increase in the eDNA content. The survival ability of DE456Δphi456 was decreased in avian macrophage HD11 under oxidative stress and acidic conditions. This is likely due to a decrease in the transcription levels of three crucial genes-rpoS, katE, and oxyR-which are needed to help the bacteria adapt to and survive in adverse environments. It has been observed through animal experiments that the presence of phi456 in the DE456 genome enhances colonization ability in vivo. Additionally, the number of type I fimbriae in DE456Δphi456 was observed to be reduced under transmission electron microscopy when compared to the wild-type strain. The qRT-PCR results indicated that the expression levels of the subunit of I fimbriae (fimA) and its apical adhesin (fimH) were significantly lower in DE456Δphi456. Therefore, it can be concluded that phi456 plays a crucial role in helping bacterial hosts survive in unfavorable conditions and enhancing the colonization ability in DE456.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Animais , Escherichia coli/genética , Prófagos/genética , Galinhas/microbiologia , Adesinas Bacterianas/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária
5.
Mar Genomics ; 74: 101082, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485290

RESUMO

Bacteria of the genus Psychrobacter are widely distributed in the global low-temperature marine environment and have been studied for their effects on the settlement and metamorphosis of marine invertebrates. Psychrobacter cibarius AOSW16051 was isolated from the surface water samples of the Baltic Sea on the edge of the Arctic Ocean. Here, we present the complete genome of strain AOSW16051, which consists of a circular chromosome composed of 3,425,040 nucleotides with 42.98% G + C content and a circular plasmid composed of 5846 nucleotides with 38.66% G + C content. The genes predicted in this strain showed its strong outer membrane system, type VI secretion system and adhesion system. Trimeric autotransporter adhesins (TAAs) has been identified in the genome of P. cibarius AOSW16051, which has a variety of biological functions in interacting with host cells. However, there are no reports on TAAs in marine bacteria and aquatic pathogenic bacteria. By analyzing the genomic data, we can gain valuable insights to enhance our understanding of the physiological characteristics of P. cibarius, as well as the biological functions of TAAs and their role in triggering metamorphosis of invertebrate larvae.


Assuntos
Psychrobacter , Psychrobacter/genética , Sistemas de Secreção Tipo V/genética , Adesinas Bacterianas/genética , Nucleotídeos
6.
Proc Natl Acad Sci U S A ; 121(13): e2320410121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498718

RESUMO

Biofilms of sulfate-reducing bacterium (SRB) like Desulfovibrio vulgaris Hildenborough (DvH) can facilitate metal corrosion in various industrial and environmental settings leading to substantial economic losses. Although the mechanisms of biofilm formation by DvH are not yet well understood, recent studies indicate the large adhesin, DvhA, is a key determinant of biofilm formation. The dvhA gene neighborhood resembles the biofilm-regulating Lap system of Pseudomonas fluorescens but is curiously missing the c-di-GMP-binding regulator LapD. Instead, DvH encodes an evolutionarily unrelated c-di-GMP-binding protein (DVU1020) that we hypothesized is functionally analogous to LapD. To study this unusual Lap system and overcome experimental limitations with the slow-growing anaerobe DvH, we reconstituted its predicted SRB Lap system in a P. fluorescens strain lacking its native Lap regulatory components (ΔlapGΔlapD). Our data support the model that DvhA is a cell surface-associated LapA-like adhesin with a N-terminal "retention module" and that DvhA is released from the cell surface upon cleavage by the LapG-like protease DvhG. Further, we demonstrate DVU1020 (named here DvhD) represents a distinct class of c-di-GMP-binding, biofilm-regulating proteins that regulates DvhG activity in response to intracellular levels of this second messenger. This study provides insight into the key players responsible for biofilm formation by DvH, thereby expanding our understanding of Lap-like systems.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sulfatos/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Biofilmes , Proteínas de Transporte/metabolismo , GMP Cíclico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
EBioMedicine ; 101: 105001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364699

RESUMO

BACKGROUND: Lifestyle- and sucrose-dependent polymicrobial ecological shifts are a primary cause of caries in populations with high caries prevalence. In populations with low prevalence, PRH1, PRH2 susceptibility and resistance phenotypes may interact with the Streptococcus mutans adhesin cariogenicity phenotype to affect caries progression, but studies are lacking on how these factors affect the microbial profile of caries. METHODS: We analysed how the residency and infection profiles of S. mutans adhesin (SpaP A/B/C and Cnm/Cbm) phenotypes and commensal streptococci and lactobacilli influenced caries progression in a prospective case-referent sample of 452 Swedish adolescents with high (P4a), moderate (P6), and low (P1) caries PRH1, PRH2 phenotypes. Isolates of S. mutans from participants were analysed for adhesin expression and glycosylation and in vitro and in situ mechanisms related to caries activity. FINDINGS: Among adolescents with the resistant (P1) phenotype, infection with S. mutans high-virulence phenotypes was required for caries progression. In contrast, with highly (P4a) or moderately (P6) susceptible phenotypes, caries developed from a broader polymicrobial flora that included moderately cariogenic oral commensal streptococci and lactobacilli and S. mutans phenotypes. High virulence involved unstable residency and fluctuating SpaP ABC, B-1, or Cnm expression/glycosylation phenotypes, whereas low/moderate virulence involved SpaP A phenotypes with stable residency. Adhesin phenotypes did not display changes in individual host residency but were paired within individuals and geographic regions. INTERPRETATION: These results suggest that receptor PRH1, PRH2 susceptibility and resistance and S. mutans adhesin virulence phenotypes specify different microbial profiles in caries. FUNDING: Swedish Research Council and funding bodies listed in the acknowledgement section.


Assuntos
Suscetibilidade à Cárie Dentária , Streptococcus mutans , Adolescente , Humanos , Virulência/genética , Biofilmes , Adesinas Bacterianas/genética , Fenótipo
8.
mSystems ; 9(3): e0123123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323815

RESUMO

The ability of many human pathogens to infect requires their ability to adhere to the host surfaces as a first step in the process. Porphyromonas gingivalis, a keystone oral pathogen, uses adhesins to adhere to the surface of the gingival epithelium and other members of the oral microbiome. In a previous study, we identified several proteins potentially linked to virulence whose mRNA levels are regulated by CRISPR-Cas type I-C. Among those, PGN_1547 was highly upregulated in the CRISPR-Cas 3 mutant. PGN_1547 is annotated as a hypothetical protein. Employing homology searching, our data support that PGN_1547 resembles an auto-transporter adhesin of P. gingivalis based on containing the DUF2807 domain. To begin to characterize the function of PGN_1547, we found that a deletion mutant displayed a significant decrease in virulence using a Galleria mellonela model. Furthermore, this mutant was significantly impaired in forming biofilms and attaching to the macrophage-like cell THP-1. Luminex revealed that the PGN_1547 mutant elicited a less robust cytokine and chemokine response from THP-1 cells, and TLR2 predominantly sensed that recombinant PGN_1547. Taken together, these findings broaden our understanding of the toolbox of virulence factors possessed by P. gingivalis. Importantly, PGN_1547, a hypothetical protein, has homologs in another member of the order Bacteroidales whose function is unknown, and our results could shed light on the role of this family of proteins as auto-transport adhesins in this phylogenetic group.IMPORTANCEPeriodontal diseases are among humans' most common infections, and besides their effect on the oral cavity, they have been associated with systemic inflammatory conditions. Among members of the oral microbiome implicated in the development of periodontitis, Porphyromonas gingivalis is considered a keystone pathogen. We have identified a new adhesin that acts as a virulence factor, PGN_1547, which contains the DUF2807 domain, which belongs to the putative auto-transporter adhesin, head GIN domain family. Deletion of this gene lowers the virulence of P. gingivalis and impacts the ability of P. gingivalis to form biofilm and attach to host cells. Furthermore, the broad distribution of these receptors in the order Bacteroidales suggests their importance in colonization by this important group of organisms.


Assuntos
Sistemas CRISPR-Cas , Porphyromonas gingivalis , Humanos , Virulência/genética , Porphyromonas gingivalis/genética , Sistemas CRISPR-Cas/genética , Filogenia , Adesinas Bacterianas/genética , Fatores de Virulência/genética
9.
Appl Microbiol Biotechnol ; 108(1): 231, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396242

RESUMO

The acidic environment and enzyme degradation lead to oral vaccines often having little immune effect. Therefore, it is an attractive strategy to study an effective and safe oral vaccine delivery system that can promote gastrointestinal mucosal immune responses and inhibit antigen degradation. Moreover, the antigens uptake by microfold cells (M cells) is the determining step in initiating efficient immune responses. Therefore, M cell-targeting is one promising approach for enhancing oral vaccine potency. In the present study, an M cell-targeting L. lactis surface display system (plSAM) was built to favor the multivalent epitope vaccine antigen (FAdE) to achieve effective gastrointestinal mucosal immunity against Helicobacter pylori. Therefore, a recombinant Lactococcus lactic acid vaccine (LL-plSAM-FAdE) was successfully prepared, and its immunological properties and protective efficacy were analyzed. The results showed that LL-plSAM-FAdE can secretively express the recombinant proteins SAM-FAdE and display the SAM-FAdE on the bacterial cell surface. More importantly, LL-plSAM-FAdE effectively promoted the phagocytosis and transport of vaccine antigen by M cells in the gastrointestinal tract of mice, and simulated high levels of cellular and humoral immune responses against four key H. pylori adhesins (Urease, CagL, HpaA, and Lpp20) in the gastrointestinal tract, thus enabling effective prevention of H. pylori infection and to some extent eliminating H. pylori already present in the gastrointestinal tract. KEY POINTS: • M-cell-targeting L. lactis surface display system LL- plSAM was designed • This system displays H. pylori vaccine-promoted phagocytosis and transport of M cell • A promising vaccine candidate for controlling H. pylori infection was verified.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Lactococcus lactis , Animais , Camundongos , Helicobacter pylori/genética , Células M , Antígenos de Bactérias , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Vacinas Sintéticas , Vacinas Bacterianas , Infecções por Helicobacter/prevenção & controle , Camundongos Endogâmicos BALB C , Anticorpos Antibacterianos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
10.
J Bacteriol ; 206(1): e0024123, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37975670

RESUMO

Serine-rich-repeat proteins (SRRPs) are large mucin-like glycoprotein adhesins expressed by a plethora of pathogenic and symbiotic Gram-positive bacteria. SRRPs play major functional roles in bacterial-host interactions, like adhesion, aggregation, biofilm formation, virulence, and pathogenesis. Through their functional roles, SRRPs aid in the development of host microbiomes but also diseases like infective endocarditis, otitis media, meningitis, and pneumonia. SRRPs comprise shared domains across different species, including two or more heavily O-glycosylated long stretches of serine-rich repeat regions. With loci that can be as large as ~40 kb and can encode up to 10 distinct glycosyltransferases that specifically facilitate SRRP glycosylation, the SRRP loci makes up a significant portion of the bacterial genome. The significance of SRRPs and their glycans in host-microbe communications is becoming increasingly evident. Studies are beginning to reveal the glycosylation pathways and mature O-glycans presented by SRRPs. Here we review the glycosylation machinery of SRRPs across species and discuss the functional roles and clinical manifestations of SRRP glycosylation.


Assuntos
Adesinas Bacterianas , Serina , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Serina/metabolismo , Glicosilação , Bactérias Gram-Positivas/metabolismo , Polissacarídeos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Aderência Bacteriana
11.
Toxins (Basel) ; 15(12)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38133173

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections cause outbreaks of severe disease in children ranging from bloody diarrhea to hemolytic uremic syndrome (HUS). The adherent factor intimin, encoded by eae, can facilitate the colonization process of strains and is frequently associated with severe disease. The purpose of this study was to examine and analyze the prevalence and polymorphisms of eae in clinical STEC strains from pediatric patients under 17 years old with and without HUS, and to assess the pathogenic risk of different eae subtypes. We studied 240 STEC strains isolated from pediatric patients in Finland with whole genome sequencing. The gene eae was present in 209 (87.1%) strains, among which 49 (23.4%) were from patients with HUS, and 160 (76.6%) were from patients without HUS. O157:H7 (126, 60.3%) was the most predominant serotype among eae-positive STEC strains. Twenty-three different eae genotypes were identified, which were categorized into five eae subtypes, i.e., γ1, ß3, ε1, θ and ζ3. The subtype eae-γ1 was significantly overrepresented in strains from patients aged 5-17 years, while ß3 and ε1 were more commonly found in strains from patients under 5 years. All O157:H7 strains carried eae-γ1; among non-O157 strains, strains of each serotype harbored one eae subtype. No association was observed between the presence of eae/its subtypes and HUS. However, the combination of eae-γ1+stx2a was significantly associated with HUS. In conclusion, this study demonstrated a high occurrence and genetic variety of eae in clinical STEC from pediatric patients under 17 years old in Finland, and that eae is not essential for STEC-associated HUS. However, the combination of certain eae subtypes with stx subtypes, i.e., eae-γ1+stx2a, may be used as risk predictors for the development of severe disease in children.


Assuntos
Adesinas Bacterianas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Adolescente , Criança , Humanos , Adesinas Bacterianas/genética , Infecções por Escherichia coli/epidemiologia , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Finlândia/epidemiologia , Síndrome Hemolítico-Urêmica/epidemiologia , Síndrome Hemolítico-Urêmica/genética , Sorotipagem , Escherichia coli Shiga Toxigênica/genética , Populações Escandinavas e Nórdicas
12.
Med Sci (Basel) ; 11(4)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132917

RESUMO

Neisseria meningitidis (N. meningitidis) serogroup B (MenB) is the leading cause of invasive meningococcal disease worldwide. The pathogen has a wide range of virulence factors, which are potential vaccine components. Studying the genetic variability of antigens within a population, especially their long-term persistence, is necessary to develop new vaccines and predict the effectiveness of existing ones. The multicomponent 4CMenB vaccine (Bexsero), used since 2014, contains three major genome-derived recombinant proteins: factor H-binding protein (fHbp), Neisserial Heparin-Binding Antigen (NHBA) and Neisserial adhesin A (NadA). Here, we assessed the prevalence and sequence variations of these vaccine antigens in a panel of 5667 meningococcal isolates collected worldwide over the past 10 years and deposited in the PubMLST database. Using multiple amino acid sequence alignments and Random Forest Classifier machine learning methods, we estimated the potential strain coverage of fHbp and NHBA vaccine variants (51 and about 25%, respectively); the NadA antigen sequence was found in only 18% of MenB genomes analyzed, but cross-reactive variants were present in less than 1% of isolates. Based on our findings, we proposed various strategies to improve the 4CMenB vaccine and broaden the coverage of N. meningitidis strains.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Neisseria meningitidis , Humanos , Antígenos de Bactérias/genética , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/genética , Eficácia de Vacinas , Neisseria meningitidis Sorogrupo B/genética , Adesinas Bacterianas/genética , Neisseria meningitidis/genética , Neisseria , Biologia Computacional , Prognóstico
13.
Mol Oral Microbiol ; 38(6): 471-488, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37941494

RESUMO

Protein glycosylation is critical to the quaternary structure and collagen-binding activity of the extracellular matrix protein adhesin A (EmaA) associated with Aggregatibacter actinomycetemcomitans. The glycosylation of this large, trimeric autotransporter adhesin is postulated to be mediated by WaaL, an enzyme with the canonical function to ligate the O-polysaccharide (O-PS) antigen with a terminal sugar of the lipid A-core oligosaccharide of lipopolysaccharide (LPS). In this study, we have determined that the Escherichia coli waaL ortholog (rflA) does not restore collagen binding of a waaL mutant strain of A. actinomycetemcomitans but does restore O-PS ligase activity following transformation of a plasmid expressing waaL. Therefore, a heterologous E. coli expression system was developed constituted of two independently replicating plasmids expressing either waaL or emaA of A. actinomycetemcomitans to directly demonstrate the necessity of ligase activity for EmaA collagen binding. Proper expression of the protein encoded by each plasmid was characterized, and the individually transformed strains did not promote collagen binding. However, coexpression of the two plasmids resulted in a strain with a significant increase in collagen binding activity and a change in the biochemical properties of the protein. These results provide additional data supporting the novel hypothesis that the WaaL ligase of A. actinomycetemcomitans shares a dual role as a ligase in LPS biosynthesis and is required for collagen binding activity of EmaA.


Assuntos
Ligases , Antígenos O , Antígenos O/genética , Antígenos O/metabolismo , Ligases/metabolismo , Aggregatibacter actinomycetemcomitans/genética , Aggregatibacter actinomycetemcomitans/metabolismo , Lipopolissacarídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Colágeno/química , Colágeno/metabolismo
14.
PLoS Genet ; 19(11): e1011048, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37972151

RESUMO

The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and bacteriophage, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs throughout the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this cluster impact host-phage interactions. Here we show that a closely related group of XRE transcription factors encoded by both C. crescentus and φCbK can physically interact and function to control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK-encoded XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly inhibit transcription of host genes including hfiA, a potent holdfast inhibitor, and gafYZ, an activator of prophage-like gene transfer agents (GTAs). XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting the C. crescentus XRE transcription factors reduced φCbK burst size, while overexpressing these host genes or φCbK tgrL rescued this burst defect. We conclude that this XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.


Assuntos
Bacteriófagos , Caulobacter crescentus , Caulobacter , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Bacteriófagos/genética , Caulobacter/genética , Caulobacter/metabolismo , Ecossistema , Xenobióticos/metabolismo , Caulobacter crescentus/metabolismo , Adesinas Bacterianas/genética , Elementos de Resposta
15.
Front Cell Infect Microbiol ; 13: 1289100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029232

RESUMO

Introduction: The adhesion of flavescence dorée phytoplasma to the midgut epithelium cells of their insect vectors is partially mediated by the variable membrane protein A (VmpA), an adhesin which shows lectin properties. In order to identify the insect receptor for VmpA, we identified Euscelidius variegatus cell proteins interacting with recombinant VmpA-His6. Methods: The E. variegatus proteins were identified by mass spectrometry analysis of VmpA-E. variegatus protein complexes formed upon in vitro interaction assays. To assess their impact in VmpA binding, we reduced the expression of the candidate genes on E. variegatus cells in culture by dsRNA-mediated RNAi. The effect of candidate gene knockdown on VmpA binding was measured by the capacity of E. variegatus cells to bind VmpA-coated fluorescent beads. Results and discussion: There were 13 candidate proteins possessing potential N-glycosylation sites and predicted transmembrane domains selected. The decrease of expression of an unknown transmembrane protein with leucine-rich repeat domains (uk1_LRR) was correlated with the decreased adhesion of VmpA beads to E. variegatus cells. The uk1_LRR was more expressed in digestive tubes than salivary glands of E. variegatus. The protein uk1_LRR could be implicated in the binding with VmpA in the early stages of insect infection following phytoplasmas ingestion.


Assuntos
Hemípteros , Phytoplasma , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Phytoplasma/genética , Phytoplasma/metabolismo , Proteína Estafilocócica A , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Hemípteros/metabolismo , Insetos Vetores , Doenças das Plantas
16.
Commun Biol ; 6(1): 1172, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973843

RESUMO

Bacterial conjugation is a major horizontal gene transfer mechanism. While the functions encoded by many conjugative plasmids have been intensively studied, the contribution of recipient chromosome-encoded genes remains largely unknown. Here, we analyzed the genetic requirement of recipient cells for conjugation of IncI2 plasmid TP114, which was recently shown to transfer at high rates in the gut microbiota. We performed transfer assays with ~4,000 single-gene deletion mutants of Escherichia coli. When conjugation occurs on a solid medium, we observed that recipient genes impairing transfer rates were not associated with a specific cellular function. Conversely, transfer assays performed in broth were largely dependent on the lipopolysaccharide biosynthesis pathway. We further identified specific structures in lipopolysaccharides used as recipient cell surface receptors by PilV adhesins associated with the type IVb accessory pilus of TP114. Our strategy is applicable to study other mobile genetic elements and understand important host cell factors for their dissemination.


Assuntos
Conjugação Genética , Escherichia coli , Plasmídeos/genética , Escherichia coli/metabolismo , Adesinas Bacterianas/genética , Transferência Genética Horizontal
17.
Elife ; 122023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860966

RESUMO

Type 4 Secretion Systems are a main driver for the spread of antibiotic resistance genes and virulence factors in bacteria. In Gram-positives, these secretion systems often rely on surface adhesins to enhance cellular aggregation and mating-pair formation. One of the best studied adhesins is PrgB from the conjugative plasmid pCF10 of Enterococcus faecalis, which has been shown to play major roles in conjugation, biofilm formation, and importantly also in bacterial virulence. Since prgB orthologs exist on a large number of conjugative plasmids in various different species, this makes PrgB a model protein for this widespread virulence factor. After characterizing the polymer adhesin domain of PrgB previously, we here report the structure for almost the entire remainder of PrgB, which reveals that PrgB contains four immunoglobulin (Ig)-like domains. Based on this new insight, we re-evaluate previously studied variants and present new in vivo data where specific domains or conserved residues have been removed. For the first time, we can show a decoupling of cellular aggregation from biofilm formation and conjugation in prgB mutant phenotypes. Based on the presented data, we propose a new functional model to explain how PrgB mediates its different functions. We hypothesize that the Ig-like domains act as a rigid stalk that presents the polymer adhesin domain at the right distance from the cell wall.


Assuntos
Adesinas Bacterianas , Proteínas de Bactérias , Virulência/genética , Plasmídeos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Adesinas Bacterianas/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Biofilmes , Polímeros
18.
Expert Rev Proteomics ; 20(12): 483-493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37873953

RESUMO

OBJECTIVES: Mycobacterial adherence plays a major role in the establishment of infection within the host. Adhesin-related proteins attach to host receptors and cell-surface components. The current study aimed to utilize in-silico strategies to determine the adhesin potential of conserved hypothetical (CH) proteins. METHODS: Computational analysis was performed on the whole Mycobacterium tuberculosis H37Rv proteome using a software program for the prediction of adhesin and adhesin-like proteins using neural networks (SPAAN) to determine the adhesin potential of CH proteins. A robust pipeline of computational analysis tools: Phyre2 and pFam for homology prediction; Mycosub, PsortB, and Loctree3 for subcellular localization; SignalP-5.0 and SecretomeP-2.0 for secretory prediction, were utilized to identify adhesin candidates. RESULTS: SPAAN revealed 776 potential adhesins within the whole MTB H37Rv proteome. Comprehensive analysis of the literature was cross-tabulated with SPAAN to verify the adhesin prediction potential of known adhesin (n = 34). However, approximately a third of known adhesins were below the probability of adhesin (Pad) threshold (Pad ≥0.51). Subsequently, 167 CH proteins of interest were categorized using essential in-silico tools. CONCLUSION: The use of SPAAN with supporting in-silico tools should be fundamental when identifying novel adhesins. This study provides a pipeline to identify CH proteins as functional adhesin molecules.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteoma/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Software , Algoritmos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
19.
mSphere ; 8(5): e0030223, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37787523

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a primary causative agent of diarrhea in travelers and young children in low- to middle-income countries. ETEC adheres to small intestinal epithelia via colonization factors (CFs) and secretes heat-stable toxin and/or heat-labile toxin, causing dysregulated ion transport and water secretion. There are over 30 CFs identified, including major CFs associated with moderate-to-severe diarrhea (MSD) and minor CFs for which a role in pathogenesis is less clear. The Global Enteric Multicenter Study identified CS14, a class 5a fimbriae, as the only minor CF significantly associated with MSD and was recommended for inclusion in ETEC vaccines. Despite detection of CS14 in ETEC isolates, the sequence conservation of the CS14 operon, its role in adherence, and functional cross-reactivity to other class 5a fimbriae like CFA/I and CS4 are not understood. Sequence analysis determined that the CS14 operon is >99.9% identical among seven geographically diverse isolates with expanded sequence analysis demonstrating SNPs exclusively in the gene encoding the tip adhesin CsuD. Western blots and electron microscopy demonstrated that CS14 expression required the growth of isolates on CFA agar with the iron chelator deferoxamine mesylate. CS14 expression resulted in significantly increased adherence to cultured intestinal cells and human enteroids. Anti-CS14 antibodies and anti-CS4 antibodies, but not anti-CFA/I antibodies, inhibited the adherence of a subset of ETEC isolates, demonstrating CS14-specific inhibition with partial cross-reactivity within the class 5a fimbrial family. These data provide support for CS14 as an important fimbrial CF and its consideration as a vaccine antigen in future strategies. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) infection causes profuse watery diarrhea in adults and children in low- to middle-income countries and is a leading cause of traveler's diarrhea. Despite increased use of rehydration therapies, young children especially can suffer long-term effects including gastrointestinal dysfunction as well as stunting and malnutrition. As there is no licensed vaccine for ETEC, there remains a need to identify and understand specific antigens for inclusion in vaccine strategies. This study investigated one adhesin named CS14. This adhesin is expressed on the bacterial surface of ETEC isolates and was recently recognized for its significant association with diarrheal disease. We demonstrated that CS14 plays a role in bacterial adhesion to human target cells, a critical first step in the disease process, and that adherence could be blocked by CS14-specific antibodies. This work will significantly impact the ETEC field by supporting inclusion of CS14 as an antigen for ETEC vaccines.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Vacinas , Criança , Humanos , Pré-Escolar , Escherichia coli Enterotoxigênica/genética , Diarreia/microbiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Fímbrias/genética , Viagem , Adesinas Bacterianas/genética , Anticorpos
20.
J Proteome Res ; 22(11): 3519-3533, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37830485

RESUMO

Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC-MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC-MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria.


Assuntos
Campylobacter jejuni , Lisina , Humanos , Lisina/metabolismo , Fibronectinas , Campylobacter jejuni/metabolismo , Acetilação , Cromatografia Líquida , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Peptídeos/metabolismo , Proteoma/genética , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...